1D NOESY with presaturation (NOESY-presat) is the most popular water suppression method. When D2O solutions of L-phenylalanine or L-valine were measured using NOESY, the absolute concentration biases increased with longer mixing and evolution times, reaching a maximum of 54% with respect to the preparation values. At mixing and evolution times of 0 ms and 0 µs, respectively, the absolute concentration biases were reduced to less than 3%. The remaining biases were caused by the off-resonance effect, which was prevented by setting the frequency offset to an intermediate value between the analyte and internal standard 3-(trimethylsilyl)-1-propanesulfonic acid-d6 (DSS-d6) signals. Nevertheless, NOESY-presat gave maximum absolute biases of 26% and 11% for glycine and maleic acid concentrations, respectively, in three H2O/D2O (90/10 vol%) solutions. The proposed NOESY-dual-presat method reduced the absolute biases to below 4%. However, water suppression was insufficient but was improved by setting the frequency offset to the same as the presaturation offset with the H2O signal, although the absolute biases rose to 5 to 13%. Quantitative analyses using NOESY-presat and NOESY-dual-presat require careful consideration of the off-resonance effect.
Keywords: 1D NOESY; Accuracy; Off-resonance effect; Presaturation; Standard solutions; Water suppression.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.