Rickettsia prowazekii possesses an exchange transport system for AMP. Chromatographic analysis of the rickettsiae demonstrated that transported AMP appeared intracellularly as AMP, ADP, and ATP, and no hydrolytic products appeared in either the intracellular or extracellular compartments. The phosphorylation of AMP to ADP and ATP was prevented by pretreatment of the cells with 1 mM N-ethylmaleimide without inhibiting the transport of AMP. Although no efflux was demonstrable in the absence of nucleotide in the medium, the intracellular adenine nucleotide pool could be exchanged with external unlabeled adenine nucleotides. Both ADP and ATP were as effective as AMP at inhibiting the uptake of [3H]AMP. Although this transport system was inhibited by low temperature (0 degrees C) and partially inhibited by the protonophore carbonyl cyanide-m-chlorophenyl hydrazone (1 mM), it was relatively insensitive to KCN (1 mM). The uptake of AMP at 34 degrees C had an apparent Kt for influx of 0.4 mM and a Vmax of 354 pmol min-1 per mg. At 0 degrees C there was a very rapid and unsaturable association of AMP with these organisms. Correction of the uptake data at 34 degrees C for the 0 degrees C component lowered the apparent Kt to 0.15 mM. Both magnesium and phosphate ions are required for optimal transport activity. Chemical measurements of the total intracellular nucleotide pools demonstrated that this system was not a net adenine nucleotide transport system, but that uptake of AMP was the result of an exchange with internal adenine nucleotides.