Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution

Nat Commun. 2024 Aug 24;15(1):7302. doi: 10.1038/s41467-024-51483-7.

Abstract

Nonlinearity of dynamic systems plays a key role in neuromorphic computing, which is expected to reduce the ever-increasing power consumption of machine learning and artificial intelligence applications. For spin waves (magnons), nonlinearity combined with phase coherence is the basis of phenomena like Bose-Einstein condensation, frequency combs, and pattern recognition in neuromorphic computing. Yet, the broadband electrical detection of these phenomena with high-frequency resolution remains a challenge. Here, we demonstrate the generation and detection of phase-coherent nonlinear magnons in an all-electrical GHz probe station based on coplanar waveguides connected to a vector network analyzer which we operate in a frequency-offset mode. Making use of an unprecedented frequency resolution, we resolve the nonlocal emergence of a fine structure of propagating nonlinear magnons, which sensitively depends on both power and a magnetic field. These magnons are shown to maintain coherency with the microwave source while propagating over macroscopic distances. We propose a multi-band four-magnon scattering scheme that is in agreement with the field-dependent characteristics of coherent nonlocal signals in the nonlinear excitation regime. Our findings are key to enable the seamless integration of nonlinear magnon processes into high-speed microwave electronics and to advance phase-encoded information processing in magnonic neuronal networks.