Phenotypic plasticity describes a genotype's ability to produce different phenotypes in response to different environments. Breeding crops that exhibit appropriate levels of plasticity for future climates will be crucial to meeting global demand, but knowledge of the critical environmental factors is limited to a handful of well-studied major crops. Using 727 maize (Zea mays L.) hybrids phenotyped for grain yield in 45 environments, we investigated the ability of a genetic algorithm and two other methods to identify environmental determinants of grain yield from a large set of candidate environmental variables constructed using minimal assumptions. The genetic algorithm identified pre- and postanthesis maximum temperature, mid-season solar radiation, and whole season net evapotranspiration as the four most important variables from a candidate set of 9150. Importantly, these four variables are supported by previous literature. After calculating reaction norms for each environmental variable, candidate genes were identified and gene annotations investigated to demonstrate how this method can generate insights into phenotypic plasticity. The genetic algorithm successfully identified known environmental determinants of hybrid maize grain yield. This demonstrates that the methodology could be applied to other less well-studied phenotypes and crops to improve understanding of phenotypic plasticity and facilitate breeding crops for future climates.
Keywords: breeding for future climates; climate change; environmental covariates; genetic algorithm; genotype–environment interactions; maize; phenotypic plasticity.
© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.