Serotonin neuromodulation directs optic nerve regeneration

bioRxiv [Preprint]. 2024 Aug 13:2024.08.12.607648. doi: 10.1101/2024.08.12.607648.

Abstract

Optic nerve (ON) regeneration in mammalian systems is limited by an overshadowing dominance of inhibitory factors. This has severely hampered the identification of pro-regenerative pathways. Here, we take advantage of the regenerative capacity of larval zebrafish to identify pathways that promote ON regeneration. From a small molecule screen, we identified modulators of serotonin (5-HT) signaling that inhibit ON regeneration. We find several serotonin type-1 receptor genes are expressed in RGC neurons during regeneration and that inhibiting 5-HT1 receptors or components of the 5-HT pathway selectively impedes ON regeneration. We show that 5-HT1 receptor signaling is dispensable during ON development yet is critical for regenerating axons to emerge from the injury site. Blocking 5-HT receptors once ON axons have crossed the chiasm does not inhibit regeneration, suggesting a selective role for 5-HT receptor signaling early during ON regeneration. Finally, we show that agonist-mediated activation of 5-HT1 receptors leads to enhanced and ectopic axonal regrowth. Combined, our results provide evidence for mechanisms through which serotonin-dependent neuromodulation directs ON regeneration in vivo.

Keywords: 5HT; Serotonin; axon regeneration; optic nerve; zebrafish.

Publication types

  • Preprint