Cognitive mechanisms of learning in sequential decision-making under uncertainty: an experimental and theoretical approach

Front Behav Neurosci. 2024 Aug 12:18:1399394. doi: 10.3389/fnbeh.2024.1399394. eCollection 2024.

Abstract

Learning to make adaptive decisions involves making choices, assessing their consequence, and leveraging this assessment to attain higher rewarding states. Despite vast literature on value-based decision-making, relatively little is known about the cognitive processes underlying decisions in highly uncertain contexts. Real world decisions are rarely accompanied by immediate feedback, explicit rewards, or complete knowledge of the environment. Being able to make informed decisions in such contexts requires significant knowledge about the environment, which can only be gained via exploration. Here we aim at understanding and formalizing the brain mechanisms underlying these processes. To this end, we first designed and performed an experimental task. Human participants had to learn to maximize reward while making sequences of decisions with only basic knowledge of the environment, and in the absence of explicit performance cues. Participants had to rely on their own internal assessment of performance to reveal a covert relationship between their choices and their subsequent consequences to find a strategy leading to the highest cumulative reward. Our results show that the participants' reaction times were longer whenever the decision involved a future consequence, suggesting greater introspection whenever a delayed value had to be considered. The learning time varied significantly across participants. Second, we formalized the neurocognitive processes underlying decision-making within this task, combining mean-field representations of competing neural populations with a reinforcement learning mechanism. This model provided a plausible characterization of the brain dynamics underlying these processes, and reproduced each aspect of the participants' behavior, from their reaction times and choices to their learning rates. In summary, both the experimental results and the model provide a principled explanation to how delayed value may be computed and incorporated into the neural dynamics of decision-making, and to how learning occurs in these uncertain scenarios.

Keywords: behavior; cognition; computational modeling; consequence; decision-making; learning; neural dynamics; uncertanty.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement N. 945539 COREDEM (Human Brain Project SGA3).