Uranium Chemistry: Identifying the Next Frontiers†

Inorg Chem. 2025 Jan 20;64(2):767-784. doi: 10.1021/acs.inorgchem.4c02173. Epub 2024 Aug 27.

Abstract

While uranium is the most extensively studied actinide in terms of chemical properties, there remains much to be explored about its fundamental chemistry. Organometallic and organoactinide chemistry first emerged in the 1950s with research that found inspiration from transition-metal chemistry with the synthesis and characterization of uranocene, expanding new opportunities for organoactinide chemistry. Since then, a significant amount of research has pursued many avenues characterizing the fundamental nature of the f orbitals and their modes of bonding as well as their potential in catalysis. Uranium(III/IV) arene complexes dominate much of uranium organometallic chemistry, with bonding interactions stabilized by δ-back-bonding. Recent additions to this area of chemistry include the first UI and new additions of UII organouranium compounds. Uranium-transition metal complexes are still rare and maintain UIV oxidation states, with variable bond lengths determining the transition-metal oxidation state. Resultant reactivities are discussed as synthetic complexes, and unique bonding and coordination motifs are highlighted. This Viewpoint will focus on significant developments in uranium chemistry from the last 15 years while considering key areas for future research.