Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells

Sci Rep. 2024 Aug 27;14(1):19837. doi: 10.1038/s41598-024-70791-y.

Abstract

Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.

Keywords: Anti-angiogenesis; Aprepitant; HUVEC; M2c; THP-1.

MeSH terms

  • Angiogenesis Inhibitors* / chemistry
  • Angiogenesis Inhibitors* / pharmacology
  • Aprepitant* / pharmacology
  • Cell Movement / drug effects
  • Cell Survival* / drug effects
  • Drug Carriers / chemistry
  • Human Umbilical Vein Endothelial Cells* / drug effects
  • Humans
  • Nanoparticles* / chemistry
  • Particle Size
  • Polylactic Acid-Polyglycolic Acid Copolymer / chemistry
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Aprepitant
  • Angiogenesis Inhibitors
  • Drug Carriers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Vascular Endothelial Growth Factor A