Neurological disorders pose a challenge for targeted therapy due to restricted access of therapeutic agents to the central nervous system (CNS). Current methods are limited by procedure-related risks, invasiveness, and insufficient CNS biodistribution. A novel percutaneous transvenous technology, currently in clinical trials for communicating hydrocephalus, offers a minimally invasive approach by providing endovascular access to the cerebrospinal fluid-filled cerebellopontine angle (CPA) cistern. We hypothesized that drug delivery to the CPA cistern could yield widespread CNS distribution. Using an ovine model, we compared the biodistribution of scAAV9-CB-GFP following CPA cistern infusion with previously reported cisterna magna (CM) administration. Targeting both the CPA cistern and CM in sheep, we employed a lumbar spine-inserted microcatheter under fluoroscopy. CPA delivery of AAV9 demonstrated biodistribution and transduction in the cerebral cortices, striatum, thalamus, midbrain, cerebellum, and spinal cord, with minor liver distribution comparable to CM. The favorable safety profile in humans with hydrocephalus suggests that percutaneous endovascular injection into the CPA could offer a clinically safer and minimally invasive delivery system for CNS gene and cell-based therapies.
Keywords: CNS drug administration; CSF drug delivery; cerebellopontine angle cistern; cisterna magna; large animal model; transvascular catheter.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.