Impact Testing in Implant-Supported Prostheses and Natural Teeth: A Systematic Review of Properties and Performance

Materials (Basel). 2024 Aug 14;17(16):4040. doi: 10.3390/ma17164040.

Abstract

Dental implants offer an effective solution for partial and total edentulism, but mechanical and biological complications exist. Furthermore, high occlusal loads challenge implants and lead to potential failures. This review focuses on impact testing in contrast to incremental and static tests, an underexplored aspect of assessing daily loads on implants, bringing to light potential complications. The review examines studies employing impact forces to assess implant-supported prostheses and natural teeth properties, highlighting their significance in dental research. A systematic search following PRISMA guidelines identified 21 relevant articles out of 224, emphasizing studies employing impact forces to evaluate various aspects of dental implant treatments. The diverse applications of impact forces in dental research were categorized into tooth structure, restorative materials, interface evaluation, implant properties, and finite element models. Some studies showed the significance of impact forces in assessing stress distribution, shock absorption, and biomechanical response. Impact testing is a critical tool for understanding the daily forces on implants. Despite diverse experimental approaches, a lack of standardized protocols complicates the systematization of the results and, therefore, the conclusions. This review highlights the need for consistent methodologies in impact testing studies for future research on implant-supported prostheses.

Keywords: dental implant; dynamic force; dynamic load; impact test; rehabilitation materials; stress distribution.

Publication types

  • Review

Grants and funding

This research received no external funding.