Acantholytic skin disorders, by definition, compromise intercellular adhesion between epidermal keratinocytes. The root cause of blistering in these diseases traces back to direct disruption of adhesive cell-cell junctions, exemplified by autoantibody-mediated attack on desmosomes in pemphigus. However, genetic acantholytic disorders originate from more indirect mechanisms. Darier disease and Hailey-Hailey disease arise from mutations in the endoplasmic reticulum calcium pump, SERCA2, and the Golgi calcium/manganese pump, SPCA1, respectively. Though the disease-causing mutations have been known for nearly 25 years, the mechanistic linkage between dysregulation of intracellular ion stores and weakening of cell-cell junctions at the plasma membrane remains puzzling. The molecular underpinnings of a related idiopathic disorder, Grover disease, are even less understood. Due to an incomplete understanding of acantholytic pathology at the molecular level, these disorders lack proven, targeted treatment options, leaving patients with the significant physical and psychological burdens of chronic skin blistering, infections, and pain. This article aims to review what is known at the molecular, cellular, and clinical levels regarding these under-studied disorders and to highlight knowledge gaps and promising ongoing research. Armed with this knowledge, our goal is to aid investigators in defining essential questions about disease pathogenesis and to accelerate progress toward novel therapeutic strategies.
Keywords: Blistering disease; Calcium ATPase; Intercellular junctions; SERCA2; SPCA1.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.