Dynamics of epigenetic modifications such as acetylation and deacetylation of histone proteins have been shown to be crucial for the life cycle development and survival of Plasmodium falciparum, the deadliest malaria parasite. In this study, we present a novel series of peptoid-based histone deacetylase (HDAC) inhibitors incorporating nitrogen-containing bicyclic heteroaryl residues as a new generation of antiplasmodial peptoid-based HDAC inhibitors. We synthesized the HDAC inhibitors by an efficient multicomponent protocol based on the Ugi four-component reaction. The subsequent screening of 16 compounds from our mini-library identified 6i as the most promising candidate, demonstrating potent activity against asexual blood-stage parasites (IC50Pf3D7 = 30 nM; IC50PfDd2 = 98 nM), low submicromolar activity against liver-stage parasites (IC50PbEEF = 0.25 μM), excellent microsomal stability (t1/2 > 60 min), and low cytotoxicity to HEK293 cells (IC50 = 136 μM).
Keywords: HDAC inhibitors; Histone deacetylase; Malaria; Multicomponent reaction; Peptoid.
Copyright © 2024 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.