Accurate interpretation of in vivo wide-field fluorescent imaging (WFFI) data requires precise separation of raw fluorescence signals into neural and hemodynamic components. The classical Beer-Lambert law-based approach, which uses concurrent 530-nm illumination to estimate relative changes in cerebral blood volume (CBV), fails to account for the scattering and reflection of 530-nm photons from non-neuronal components leading to biased estimates of CBV changes and subsequent misrepresentation of neural activity. This study introduces a novel linear regression approach designed to overcome this limitation. This correction provides a more reliable representation of CBV changes and neural activity in fluorescence data. Our method is validated across multiple datasets, demonstrating its superiority over the classical approach.
Keywords: Beer-lambert law; Functional hemodynamic changes; Linear regression; Noise subtraction method; Wide-field fluorescent imaging.
Copyright © 2024. Published by Elsevier Inc.