Background & aims: Computer-aided diagnosis (CADx) assists endoscopists in differentiating between neoplastic and non-neoplastic polyps during colonoscopy. This study aimed to evaluate the impact of polyp location (proximal vs. distal colon) on the diagnostic performance of CADx for ≤5 mm polyps.
Methods: We searched for studies evaluating the performance of real-time CADx alone (ie, independently of endoscopist judgement) for predicting the histology of colorectal polyps ≤5 mm. The primary endpoints were CADx sensitivity and specificity in the proximal and distal colon. Secondary outcomes were the negative predictive value (NPV), positive predictive value (PPV), and the accuracy of the CADx alone. Distal colon was limited to the rectum and sigmoid.
Results: We included 11 studies for analysis with a total of 7782 polyps ≤5 mm. CADx specificity was significantly lower in the proximal colon compared with the distal colon (62% vs 85%; risk ratio (RR), 0.74; 95% confidence interval [CI], 0.72-0.84). Conversely, sensitivity was similar (89% vs 87%); RR, 1.00; 95% CI, 0.97-1.03). The NPV (64% vs 93%; RR, 0.71; 95% CI, 0.64-0.79) and accuracy (81% vs 86%; RR, 0.95; 95% CI, 0.91-0.99) were significantly lower in the proximal than distal colon, whereas PPV was higher in the proximal colon (87% vs 76%; RR, 1.11; 95% CI, 1.06-1.17).
Conclusion: The diagnostic performance of CADx for polyps in the proximal colon is inadequate, exhibiting significantly lower specificity compared with its performance for distal polyps. Although current CADx systems are suitable for use in the distal colon, they should not be employed for proximal polyps until more performant systems are developed specifically for these lesions.
Keywords: Artificial Intelligence; CADx; Characterization; Colonoscopy; Colorectal Cancer; Computer-aided Diagnosis; Optical Diagnosis; Screening.
Copyright © 2024 AGA Institute. Published by Elsevier Inc. All rights reserved.