In modern data science, higher criticism (HC) method is effective for detecting rare and weak signals. The computation, however, has long been an issue when the number of p-values combined ( ) and/or the number of repeated HC tests ( ) are large. Some computing methods have been developed, but they all have significant shortcomings, especially when a stringent significance level is required. In this paper, we propose an accurate and highly efficient computing strategy for four variations of HC. Specifically, we propose an unbiased cross-entropy-based importance sampling method ( ) to benchmark all existing computing methods, and develop a modified SetTest method (MST) that resolves numerical issues of the existing SetTest approach. We further develop an ultra-fast approach (UFI) combining pre-calculated statistical tables and cubic spline interpolation. Finally, following extensive simulations, we provide a computing strategy integrating MST, UFI and other existing methods with R package "HCp" for virtually any and small p-values ( ). The method is applied to a COVID-19 disease surveillance example for spatio-temporal outbreak detection from case numbers of 804 days in 3,342 counties in the United States. Results confirm viability of the computing strategy for large-scale inferences. Supplementary materials for this article are available online.
Keywords: analytical approximation; asymptotic rare and weak model; higher criticism; importance sampling; p-value computation.