Under inflammatory conditions, macrophage dominance affects the degree of inflammation. We assessed the effects of the active vitamin D (calcitriol) administration on inflammatory processes and macrophage dominance and aimed to determine the potential positive macroscopic and histological effects in supermicrosurgical arterial anastomosis model of rats. Forty rats were divided into five groups: control surgery (Group 1), surgery with preoperative (Group 2), post-operative (Group 3), perioperative (Group 4) systemic calcitriol and surgery with local calcitriol (Group 5). Eighty femoral artery anastomoses were planned in both legs of rats. Systemic calcitriol was administered intraperitoneally daily to the animals in the relevant groups. Preoperative vessel diameter measurements were taken before anastomosis. Three weeks post-surgery, post-operative vessel diameter measurements were taken, anastomosis patency was assessed and vascular segments were collected for histological examination, which included assessment of M1 and M2 macrophage depolarisation, leucocyte infiltration, intima-media ratio and luminal gap scoring. Systemic calcitriol administration (pre-, post- or perioperative) significantly improved the vessel diameter (p < 0.001); there was no significant difference among Groups 2-4. Histological findings revealed that Groups 3 and 4 had lower intima-media ratios (p < 0.05 and p < 0.01), higher M2-M1 macrophage ratios (p < 0.01 and p < 0.001) and lower leucocyte infiltration (p < 0.05, p < 0.01 and p < 0.001). Local calcitriol administration had no vasodilatory effects or resulted in positive histological outcomes. Although the administration of calcitriol pre- and post-operatively increased the vessel diameter, the latter appeared to have a more favourable impact on the histological analyses.
Keywords: Calcitriol; M2-M1 macrophage ratio; Rat model; Success of arterial anastomosis; Supermicrosurgery; Vitamin D.
Copyright © 2024 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.