Herein, this work reports an efficient acephate adsorption using chitosan (CS) incorporating varying amounts of magnetite. A co-precipitation methodology was employed for the functionalization of chitosan with iron nanoparticles, using Fe2+ as the sole iron source and with a low energy requirement. The adsorbents were characterized by FTIR, XRD, VSM, and nitrogen porosimetry techniques. The CS∙Fe3O4 1:1 NPs showed the highest acephate removal percentage (74.96 %) at pH 9 and ambient temperatures. The adsorption process exhibited high dependencies on pH, adsorbent dosage, initial concentration of adsorbate, and ionic strength. Sips and pseudo-second-order kinetics models best adjusted the experimental data, suggesting that the process occurs on a heterogeneous surface. Thermodynamic evaluation showed that the adsorption was exothermic, favorable, and predominately through chemical interactions. Finally, the CS∙Fe3O4 showed no significant decrease after several cycles of adsorption/desorption, avoiding centrifugation-filtration steps.
Keywords: Emergent pollutants; Magnetite; Water remediation.
Copyright © 2024 Elsevier B.V. All rights reserved.