The role of microplastics (MPs) as pollutant carriers and their influence on the fate of organic pollutants has received considerable attention. However, the impacts of MPs on the adsorption of amide herbicides in soil, have not been investigated. In this study, non-biodegradable (polyethylene, PEM) and biodegradable (polybutylene adipate terephthalate, PBATM) MPs were aged by exposure to one month of ultraviolet irradiation. The impacts of MPs on the adsorption of napropamide (Nap) in two agricultural soils (black soil [BS] and fluvo-aquic soil [CS]) were investigated through batch experiments. The findings suggested that the adsorption of Nap onto PEM was mainly governed by physical processes, while, chemical mechanisms, should not be overlooked on PBATM. With the addition of 0.2% MPs, the maximum adsorption capacity (Qm) and adsorption distribution coefficient (KF) of soil containing PEM (soil-PEM) were higher than that of soil-PBATM, however, the Qm and KF values of soil-PBATM for Nap were higher when the addition of MPs was 2%. After UV aging, the increased specific surface area of MPs led to an increased adhesion of soil particles. These were attributed to the different surface properties and concentrations of different (aged) MPs, resulting in differences in the inhibition effect by soil particles. The adhesion of soil particles was confirmed by X-ray photoelectron spectroscopy. Additionally, regardless of the addition of MPs, the Qm values of BS for Nap were higher than those for CS. In summary, MPs can alter the adsorption of Nap in soil, influencing both its mobility within the soil ecosystem and the environmental risk.
Keywords: Adsorption mechanism; Aging; Amide herbicide; Biodegradable and non-biodegradable; Soil containing microplastics; Soil minerals.
Copyright © 2024 Elsevier Ltd. All rights reserved.