Autophagy is a catabolic process that was described to play a critical role in advanced stages of cancer, wherein it maintains tumor cell homeostasis and growth by supplying nutrients. Autophagy is also described to support alternative cellular trafficking pathways, providing a non-canonical autophagy-dependent inflammatory cytokine secretion mechanism. Therefore, autophagy inhibitors have high potential in the treatment of cancer and acute inflammation. In our study, we identified compound 1 as an inhibitor of the ATG12-ATG3 protein-protein interaction. We focused on the systematic modification of the original hit 1, a casein kinase 2 (CK2) inhibitor, to find potent disruptors of ATG12-ATG3 protein-protein interaction. A systematic modification of the hit structure led us to a wide plethora of compounds that maintain its ATG12-ATG3 inhibitory activity, which could act as a viable starting point to design new compounds with diverse therapeutic applications.
Keywords: Autophagy; Autophagy inhibition; Protein–protein interaction; Small molecule.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.