Enhanced Interfacial Modification by Ordered Discotic Liquid Crystals for Thermotolerance Perovskite Solar Cells

Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411121. doi: 10.1002/anie.202411121. Epub 2024 Oct 24.

Abstract

Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration under heating. Ultimately, our approach increases the efficiency of solar cells from 23.36 % to 25.02 %. The thermal stability of the devices retains 80.1 % of their initial efficiency after aging at 85 °C for 1008 hours without encapsulation. Moreover, the optimized PSCs maintained 82.4 % of the initial efficiency after aging under one sunlight exposure for 1008 hours. This work provides a simple yet effective strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.

Keywords: charge transport; discotic liquid crystal; perovskite solar cell; surface passivation; thermal stability.