Zingiber officinale Ameliorates Acute Toxoplasmosis-Induced Pathology in Mice

Acta Parasitol. 2024 Dec;69(4):1785-1800. doi: 10.1007/s11686-024-00884-1. Epub 2024 Sep 3.

Abstract

Background: Toxoplasma gondii (T. gondii) infects one third of the world's population with significant illness, mainly among immunocompromised individuals and pregnant women. Treatment options for toxoplasmosis are limited which signifies the need for novel, potent, and safe therapeutic options. The goal of this study was to assess the effectiveness of the ethanolic extract of Zingiber officinale (Z. officinale) in treating mice infected with the RH T. gondii strain.

Materials and methods: Gas Chromatography/Mass Spectrometry (GC/MS) was used to identify components of ethanolic extract of Z. officinale. A total of 80 mice were randomly allocated into four experimental groups that contained 20 mice each. The first group was left uninfected (uninfected control), while three groups were infected with T. gondii RH virulent strain tachyzoites at 2500 tachyzoites/mouse. One infected group was left untreated (infected, untreated), whereas the other two groups were treated orally with either spiramycin (positive control) or Z. officinale ethanolic extract at doses of 200 mg/kg and 500 mg/kg, respectively for 5 days, starting the day of infection. Ten mice from each group were used to assess mice survival in different groups, whereas the other ten mice in each group were sacrificed on the 5th day post-infectin (dpi) to estimate the treatment efficacy by quantifying liver parasite load, liver function, nitric oxide (NO) production, and levels of antioxidant enzymes. Additionally, histopathological studies were performed to evaluate the therapeutic effect of Z. officinale treatment on toxoplasmosis-induced pathological alterations in liver, brain, and spleen.

Results: Treatment with Z. officinale ethanolic extract extended the survival of mice till 9th dpi compared to 7th dpi in infected untreated mice. Higher percentage of mice survived in Z. officinale-treated group compared to spiramycin-treatment group at different time points. Liver parasite loads were significantly lower in Z. officinale extract-treated mice and spiramycin-treated mice compared to infected untreated mice which correlated with significantly lower levels of serum liver enzymes (ALT, AST) and nitric oxide (NO), as well as significantly higher catalase (CAT) antioxidant enzyme activity. Scanning electron microscopy (SEM) examination of tachyzoites from the peritoneal fluid revealed marked damage in tachyzoites from Z. officinale-treated group compared to that from infected untreated mice. Moreover, treatment with Z. officinale ethanolic extract alleviated infection-induced pathological alterations and restored normal tissue morphology of liver, brain, and spleen.

Conclusion: Our results demonstrated that Z. officinale treatment reduced parasite burden and reversed histopathological and biochemical alterations in acute murine toxoplasmosis. These findings support the potential utility of Z. officinale as a future effective natural therapeutic for toxoplasmosis. Further studies are needed to determine the effective active ingredient in Z. officinale extract that can be further optimized for treatment of toxoplasmosis.

Keywords: Toxoplasma gondii; Zingiber officinale; Brain; Liver; Parasite; Spiramycin; Spleen; Tachyzoites; Toxoplasmosis.

MeSH terms

  • Animals
  • Brain / parasitology
  • Brain / pathology
  • Disease Models, Animal
  • Female
  • Gas Chromatography-Mass Spectrometry
  • Liver / drug effects
  • Liver / parasitology
  • Liver / pathology
  • Mice
  • Plant Extracts* / chemistry
  • Plant Extracts* / pharmacology
  • Plant Extracts* / therapeutic use
  • Spleen / drug effects
  • Spleen / parasitology
  • Toxoplasma* / drug effects
  • Toxoplasmosis / drug therapy
  • Toxoplasmosis / parasitology
  • Toxoplasmosis, Animal / drug therapy
  • Toxoplasmosis, Animal / parasitology
  • Zingiber officinale* / chemistry

Substances

  • Plant Extracts