The advanced evolution of the human cerebral cortex forms the basis for our high-level cognitive functions. Through a comparative analysis of single-nucleus transcriptome data from the human neocortex and that of chimpanzees, macaques, and marmosets, we discovered 20 subgroups of cell types unique to the human brain, which include 11 types of excitatory neurons. Many of these human-unique cell clusters exhibit significant overexpression of genes regulated by human-specific enhancers. Notably, these specific cell clusters also express genes associated with disease risk, particularly those related to brain dysfunctions like learning disorders. Furthermore, genes linked to cortical thickness and human episodic memory encoding activities show heightened expression within these cell subgroups. These findings underscore the critical role of human brain-unique cell clusters in the evolution of human brain functions.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.