Radiology may better define tuberculosis (TB) severity and guide duration of treatment. We aimed to systematically study baseline chest X-rays (CXR) and their association with TB treatment outcome using real-world data. We used logistic regression to associate TB treatment outcomes with CXR findings, including percent of lung involved in disease (PLI), cavitation, and Timika score, alone or in combination with other clinical characteristics, stratifying by drug resistance status and HIV (n = 2,809). We fine-tuned convolutional neural nets (CNN) to automate PLI measurement from the CXR DICOM images (n = 5,261). PLI is the only CXR finding associated with unfavorable outcome across drug resistance and HIV subgroups [Rifampicin-susceptible disease without HIV, adjusted odds ratio (aOR) 1·11 (1·01, 1·22), P-value 0·025]. The most informed model of baseline characteristics tested predicts outcome with a validation mean area under the curve (AUC) of 0·769. PLI and Timika (AUC 0·656 and 0·655 respectively) predict unfavorable outcomes better than cavitary information (best AUC 0·591). The addition of PLI improves prediction compared to sex and age alone (AUC 0·680 and 0·627, respectively).PLI>25% provides a better separation of favorable and unfavorable outcomes compared to PLI>50%. The best performing ensemble of CNNs has an AUC 0·850 for PLI>25% and mean absolute error of 11·7% for the PLI value. PLI is better than cavitation for predicting unfavorable treatment outcome in pulmonary TB in non-clinical trial settings and it can be accurately and automatically predicted with CNNs.
One sentence summary: The percent of lung involved in disease improves prediction of unfavorable outcomes in pulmonary tuberculosis when added to clinical characteristics.