A key step of Canonical Nonhomologous End Joining (C-NHEJ) is synapsis of DNA double strand break (DSB) ends for ligation. The DNA-PKcs dimer mediates synapsis in a long-range complex with DSB ends remaining apart, whereas the XLF homodimer can mediate synapsis in both long-range and short-range complexes. Recent structural studies found the PAXX homodimer may also facilitate synapsis in long-range complexes with DNA-PKcs via its interactions with Ku70. Thus, we examined the influence of PAXX in C-NHEJ of chromosomal DSBs, which we compared to another Ku-binding factor, MRI. Using EJ of blunt DSBs with Cas9 reporters as a readout for C-NHEJ, we found that PAXX and/or MRI are dispensable. However, when combined with disruption of DNA-PKcs, particularly with DNA-PKcs kinase inhibition, PAXX becomes important for blunt DSB EJ. In contrast, while DNA-PKcs is also important to suppress short deletion mutations with microhomology, this effect is not magnified with PAXX loss. MRI loss had no effect combined with DNA-PKcs disruption, but becomes important for blunt DSB EJ when combined with disruption of XLF, as is PAXX. Finally, XLF loss causes an increase in larger deletions compared to DNA-PKcs inhibition, which is magnified with combined loss of MRI. Altogether, we suggest that PAXX promotes DSB end synapsis during C-NHEJ in a manner that is partially redundant with DNA-PKcs and XLF, whereas MRI appears to be mainly important in the context of XLF disruption.
Keywords: Biological Sciences; C-NHEJ; DNA-PKcs; Genetics; MRI; PAXX; XLF; chromosomal double-strand break repair.