Tuning the Properties of Halide Nanocomposite Solid Electrolytes with Diverse Oxides for All-Solid-State Batteries

ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49328-49336. doi: 10.1021/acsami.4c08915. Epub 2024 Sep 4.

Abstract

Herein, we report halide nanocomposite solid electrolytes (HNSEs) that integrate diverse oxides with alterations that allow tuning of their ionic conductivity, (electro)chemical stability, and specific density. A two-step mechanochemical process enabled the synthesis of multimetal (or nonmetal) HNSEs, MO2-2Li2ZrCl6, as verified by pair distribution function and X-ray diffraction analyses. The multimetal (or nonmetal) HNSE strategy increases the ionic conductivity of Li2ZrCl6 from 0.40 to 0.82 mS cm-1. Additionally, cyclic voltammetry test findings corroborated the enhanced passivating properties of the HNSEs. Notably, incorporating SiO2 into HNSEs leads to a substantial reduction in the specific density of HNSEs, demonstrating their strong potential for achieving a high energy density and lowering costs. Fluorinated SiO2-2Li2ZrCl5F HNSEs exhibited enhanced interfacial compatibility with Li6PS5Cl and LiCoO2 electrodes. Cells employing SiO2-2Li2ZrCl5F with LiCoO2 exhibit superior electrochemical performance delivering the initial discharge capacity of 162 mA h g-1 with 93.7% capacity retention at the 100th cycle at 60 °C.

Keywords: Li-ion batteries; all-solid-state batteries; halide solid electrolytes; interfacial conduction; ionic conductivities.