We address the targeted destruction of Karenia brevis using the algaecide calcium peroxide, in tandem with the flocculation and sinking of the species. The specific aspect of the approach is the incorporation of the algaecide within the floc to rapidly kill K. brevis, thus minimizing escape of cells from the floc and reentry to the water column. CaO₂ gradually produces H₂O₂, which diffuses through cell membranes and induces oxidative stress, leading to cell death via excessive reactive oxygen species (ROS) formation. The effect of varying doses of calcium peroxide on K. brevis cells was measured with pulse amplitude modulated fluorometry and indicated that doses as low as 30 mg/L when integrated into flocs are effective in suppressing photosynthesis. Cell viability assays also indicate that such low levels are sufficient to cause cell death in a 3-6 hour time period. Thus, the proposed technology involving the incorporation of calcium peroxide in a cationic flocculating agent (polyaluminum chloride, PAC) leads to an inexpensive and scalable technology to mitigate harmful algal blooms of K. brevis.
Keywords: Brevotoxins; Calcium peroxide; Harmful algal bloom; Karenia brevis; Polyaluminium chloride; Targeted mitigation.
Copyright © 2024. Published by Elsevier B.V.