Glycomimetics as Candidates for Treatment and Prevention of Catheter-associated Biofilms Formed by Pseudomonas aeruginosa

Eur Urol Focus. 2024 Sep;10(5):720-721. doi: 10.1016/j.euf.2024.08.011. Epub 2024 Sep 7.

Abstract

Bacteria develop biofilms for protection and persistent colonization. Biofilms of pathogenic bacteria can lead to serious medical problems. Bacterial biofilms on catheters used in the treatment of urinary tract diseases represent a major challenge for antibiotic therapy. Several attempts to eradicate biofilms using classical antibiotics and various alternatives, including antibiotic treatment of surfaces, surfaces that release silver ions, and surfaces with anti-adhesive properties, have not shown clinical efficacy in biofilm prevention or removal. Pseudomonas aeruginosa is one of the most problematic biofilm-forming uropathogens and accounts for approximately 10% of urinary tract infections. Novel glycomimetics that inhibit bacterial lectins have shown promising results in the prevention of P. aeruginosa biofilms and in interference with bacterial virulence. This mini-review summarizes the status of glycomimetic development and provides a perspective on their use in clinical practice. PATIENT SUMMARY: For patients with recurrent urinary tract infections and patients needing long-term catheter use to manage urinary problems, biofilms formed by bacteria can be a problem and are difficult to treat. New compounds that mimic carbohydrates, called glycomimetics, have shown promise in inhibiting these bacteria and the biofilms they form. More research on these compounds is needed before they can be used to treat patients.

Keywords: Biofilm; Catheters; Glycomimetics; Pseudomonas aeruginosa; Urinary tract infection.

Publication types

  • Review

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Biofilms* / drug effects
  • Catheter-Related Infections* / drug therapy
  • Catheter-Related Infections* / microbiology
  • Catheter-Related Infections* / prevention & control
  • Humans
  • Pseudomonas Infections* / drug therapy
  • Pseudomonas Infections* / prevention & control
  • Pseudomonas aeruginosa* / drug effects
  • Urinary Catheters / microbiology
  • Urinary Tract Infections* / drug therapy
  • Urinary Tract Infections* / microbiology
  • Urinary Tract Infections* / prevention & control

Substances

  • Anti-Bacterial Agents