A series of novel 3,6-disubstituted pyridazine derivatives were designed, synthesized, and biologically evaluated as preclinical anticancer candidates. Compound 9e exhibited the highest growth inhibition against most of the NCI-60 cancer cell lines. The in vivo anticancer activity of 9e was subsequently investigated at two dose levels using the Ehrlich ascites carcinoma solid tumor animal model, where a reduction in the mean tumor volume allied with necrosis induction was reported without any signs of toxicity in the treated groups. Interestingly, compound 9e was capable of downregulating c-jun N-terminal kinase-1 (JNK1) gene expression and curbing the protein levels of its phosphorylated form, in parallel with a reduction in its downstream targets, namely, c-Jun and c-Fos in tumors, along with restoring p53 activity. Furthermore, molecular docking and dynamics simulations were carried out to predict the binding mode of 9e and prove its stability in the JNK1 binding pocket.
© 2024 The Authors. Published by American Chemical Society.