Pesticides have health consequences for humans, living organisms, and ecosystems. Research on biological management, with a primary focus on entomopathogens, has been accelerated by the rise in issues such as pesticide residue, soil degradation, and pest resistance. Entomopathogenic nematodes (EPNs) are among the most frequently used and commercialised biopesticides. However, they are restricted in their infectivity, persistence, storage, and cost of production. The nematodes, along with their endosymbiotic bacteria, combine to form a nemato-bacterial complex. This complex is responsible for causing mortality in insect pests due to the production of insecticidal compounds. The adaptation of EPNs is an eco-friendly method, economical, and safer for the environment as well as non-target organisms. Moreover, it's a better alternative to synthetic chemical pesticides, as it can be helpful in overcoming pest resistance and resurgence issues. Application of nematode juveniles is a cost-effective method, but the necessity of refrigeration and transportation may enhance their cost. This review emphasised the diversity of entomopathogenic nematodes and their endosymbiotic bacteria, the exploration of the biocontrol potential of insect pests by under-utilisation of nematodes, the development of nematode-based formulations, and the discussion of critical issues and required research in the future.
Keywords: Biocontrol; Entomopathogens; Formulations; Infectivity; Pesticides.
© 2024 The Authors. Published by Elsevier Ltd.