Arabidopsis hydathodes are sites of auxin accumulation and nutrient scavenging

Plant J. 2024 Nov;120(3):857-871. doi: 10.1111/tpj.17014. Epub 2024 Sep 10.

Abstract

Hydathodes are small organs found on the leaf margins of vascular plants which release excess xylem sap through a process called guttation. While previous studies have hinted at additional functions of hydathode in metabolite transport or auxin metabolism, experimental support is limited. We conducted comprehensive transcriptomic, metabolomic and physiological analyses of mature Arabidopsis hydathodes. This study identified 1460 genes differentially expressed in hydathodes compared to leaf blades, indicating higher expression of most genes associated with auxin metabolism, metabolite transport, stress response, DNA, RNA or microRNA processes, plant cell wall dynamics and wax metabolism. Notably, we observed differential expression of genes encoding auxin-related transcriptional regulators, biosynthetic processes, transport and vacuolar storage supported by the measured accumulation of free and conjugated auxin in hydathodes. We also showed that 78% of the total content of 52 xylem metabolites was removed from guttation fluid at hydathodes. We demonstrate that NRT2.1 and PHT1;4 transporters capture nitrate and inorganic phosphate in guttation fluid, respectively, thus limiting the loss of nutrients during this process. Our transcriptomic and metabolomic analyses unveil an organ with its specific physiological and biological identity.

Keywords: Arabidopsis; auxin; hydathode; metabolome; nitrate; phosphate; transcriptome; transport.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Biological Transport
  • Gene Expression Regulation, Plant*
  • Indoleacetic Acids* / metabolism
  • Nitrates / metabolism
  • Nutrients / metabolism
  • Phosphates / metabolism
  • Plant Leaves* / genetics
  • Plant Leaves* / metabolism
  • Transcriptome
  • Xylem* / genetics
  • Xylem* / metabolism

Substances

  • Indoleacetic Acids
  • Arabidopsis Proteins
  • Phosphates
  • Nitrates