Utilizing treated wastewater for crop cultivation is essential in regions with scarce freshwater resources for irrigation. This study evaluated the growth, fruit yield, nutritional and phytochemical quality of tomato fruits cultivated using a treated wastewater-based hydroponics system developed for the Trans Himalaya, India. Tomatoes grown with treated wastewater exhibited better growth, yield, nutritional content, phytochemical properties, and antioxidant activities than those grown in soil. Specifically, the lycopene and β carotene were significantly (p < 0.05) higher in tomato fruits cultivated in treated wastewater (0.05 ± 0.00 and 0.09 ± 0.00 mg/g) than soil (0.02 ± 0.00 and 0.01 ± 0.00 mg/g). Also, significantly (p < 0.05) higher carbohydrate and protein contents (55.91 ± 1.19 and 21.34 ± 0.31 mg/g, respectively) were obtained under-treated wastewater than soil (39.48 ± 0.07 and 18.52 ± 0.10 mg/g). Similar trends were also obtained in phytochemicals and mineral analysis. However, morphological, proximate, and phytochemical characteristics of tomatoes in nutrient and wastewater-based hydroponics were comparable. Treated wastewater offers eco-friendly benefits for quality crop production.
Keywords: Antioxidant activity; Lycopene; Pre-treatment; Proximate composition; Tomato; β carotene.
Copyright © 2024. Published by Elsevier Ltd.