The rise of antibiotic resistance necessitates effective alternative therapies. Antimicrobial peptides (AMPs) are promising due to their broad inhibitory effects. This study focuses on predicting the minimum inhibitory concentration (MIC) of AMPs against whom-priority pathogens: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. We developed a comprehensive regression model integrating AMP sequence-based and genomic features. Using eight AI-based architectures, including deep learning with protein language model embeddings, we created an ensemble model combining bi-directional long short-term memory (BiLSTM), convolutional neural network (CNN), and multi-branch model (MBM). The ensemble model showed superior performance with Pearson correlation coefficients of 0.756, 0.781, and 0.802 for the bacterial strains, demonstrating its accuracy in predicting MIC values. This work sets a foundation for future studies to enhance model performance and advance AMP applications in combating antibiotic resistance.
Keywords: Biological sciences; Chemistry; Computer science.
© 2024 The Authors.