The ankle infrequently develops primary osteoarthritis (OA), especially when compared to the hip and the knee. Ankle OA instead generally develops only after trauma. The consequences of end-stage ankle OA can nonetheless be extremely debilitating, with impairment comparable to that of end-stage kidney disease or congestive heart failure. Disconcertingly, evidence suggests that ankle OA can develop more often than is generally appreciated after even low-energy rotational ankle fractures and chronic instability associated with recurrent ankle sprains, albeit at a slower rate than after more severe trauma. The mechanisms whereby ankle OA develops after trauma are poorly understood, but mechanical factors are implicated. A better understanding of the prevalence and mechanical etiology of post-traumatic ankle OA can lead to better prevention and mitigation. New surgical and conservative interventions, including improved ligamentous repair strategies and custom carbon fiber bracing, hold promise for advancing treatment that may prevent residual ankle instability and the development of ankle OA. Studies are needed to fill in key knowledge gaps here related to etiology so that the interventions can target key factors. New technologies, including weight bearing CT and biplane fluoroscopy, offer fresh opportunities to better understand the relationships between trauma, ankle alignment, residual ankle instability, OA development, and foot/ankle function. This paper begins by reviewing the epidemiology of post-traumatic ankle OA, presents evidence suggesting that new treatment options might be successful at preventing ankle OA, and then highlights recent technical advances in understanding of the origins of ankle OA to identify directions for future research.
Keywords: biomechanics; foot and ankle; functional imaging; kinematics and kinetics; osteoarthritis—post‐traumatic.
© 2024 The Author(s). Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.