Freezing of short-range ordered antiferromagnetic clusters in the CrFeTi2O7system

J Phys Condens Matter. 2024 Sep 25;36(50). doi: 10.1088/1361-648X/ad7ac7.

Abstract

We report on the CrFeTi2O7(CFTO) system using a combination of x-ray diffraction, dc magnetization, ac susceptibility, specific heat and neutron diffraction measurements. CFTO is seen to crystallize in a monoclinicP21/asymmetry. It shows a glassy freezing atTf∼22 K, characterized by the observation of bifurcation between ZFC and FCχ(T) curves, frequency dispersion acrossTfin ac susceptibility, and follows Vogel-Fulcher and power law type critical dynamics, very slow relaxation of iso-thermal remanent magnetization with time and a linear temperature dependence of magnetic contribution to specific heatCmbelowTf. The microscopic neutron diffraction analysis of CFTO not only confirms the absence of long-range antiferromagnetic (AFM) ordering but also exhibits diffuse scattering due to the presence of short-range ordered AFM correlated spin clusters.

Keywords: pyrochlore; short-range order; spin glasses; transition metal oxides.