Gastroretentive dosage forms are recommended for several active substances because it is often necessary for the drug to be released from the carrier system into the stomach over an extended period. Among gastroretentive dosage forms, floating tablets are a very popular pharmaceutical technology. In this study, it was investigated whether a rapid, nondestructive method can be used to characterize the floating properties of a tablet. To accomplish our objective, the same composition was compressed, and varied compression forces were applied to achieve the desired tablet. In addition to physical examinations, digital microscopic images of the tablets were captured and analyzed using image analysis techniques, allowing the investigation of the floatability of the dosage form. Image processing algorithms and artificial neural networks (ANNs) were utilized to classify the samples based on their strength and floatability. The input dataset consisted solely of the acquired images. It has been shown by our research that visible imaging coupled with pattern recognition neural networks is an efficient way to categorize these samples based on their floatability. Rapid and non-destructive digital imaging of tablet surfaces is facilitated by this method, offering insights into both crushing strength and floating properties.
Keywords: Artificial neural networks; Floatability; Gastroretentive dosage forms; VIS imaging-based machine vision.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.