Background/Objectives: Traumatic brain injury (TBI) is a leading cause of death and disability in children. Currently, no biological test can predict outcomes in pediatric TBI, complicating medical management. This study sought to identify brain-related micro-ribosomal nucleic acids (miRNAs) in saliva associated with moderate-to-severe TBI in children, offering a potential non-invasive, prognostic tool. Methods: A case-control design was used, enrolling participants ≤ 18 years old from three pediatric trauma centers. Participants were divided into moderate-to-severe TBI and non-TBI trauma control groups. Saliva samples were collected within 24 h of injury, with additional samples at 24-48 h and >48 h post-injury from the TBI group. miRNA profiles were visualized with partial least squares discriminant analysis (PLSDA) and hierarchical clustering. Mann-Whitney testing was used to compare miRNAs between groups, and mixed models were used to assess longitudinal expression patterns. DIANA miRPath v3.0 was used to interrogate the physiological functions of miRNAs. Results: Twenty-three participants were enrolled (14 TBI, nine controls). TBI and control groups displayed complete separation of miRNA profiles on PLSDA. Three miRNAs were elevated (adj. p < 0.05) in TBI (miR-1255b-5p, miR-3142, and miR-4320), and two were lower (miR-326 and miR-4646-5p). Three miRNAs (miR-3907, miR-4254, and miR-1273g-5p) showed temporal changes post-injury. Brain-related targets of these miRNAs included the glutamatergic synapse and GRIN2B. Conclusions: This study shows that saliva miRNA profiles in children with moderate-to-severe TBI may differ from those with non-TBI trauma and exhibit temporal changes post-injury. These miRNAs could serve as non-invasive biomarkers for prognosticating pediatric TBI outcomes. Further studies are needed to confirm these findings.
Keywords: TBI; pediatrics; trauma; traumatic brain injury.