Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare-Earth Metal-Organic Frameworks (MOFs)

Materials (Basel). 2024 Aug 26;17(17):4213. doi: 10.3390/ma17174213.

Abstract

Tuning a material's hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal-organic frameworks (MOFs) can make them hydrophobic. In this work, the linker bis(trifluoromethyl)terephthalic acid (TTA) was used to make highly fluorinated MOFs. The reaction of the TTA and RE3+ (RE: Y, Gd, or Eu) ions resulted in the primitive cubic structure (pcu) exhibiting RE dimer nodes (RE-TTA-pcu). The crystal structure of the RE-TTA-pcu was obtained. The use of the 2-fluorobenzoic acid in the synthesis resulted in fluorinated hexaclusters in the face-centered cubic (fcu) framework (RE-TTA-fcu), analogous to the UiO-66 MOF. The RE-TTA-fcu has fluorine on the linker as well as in the cluster. The MOFs were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and contact angle measurements.

Keywords: MOFs; coordination polymers; hydrophobic materials; metal–organic frameworks.