Vitellogenin (Vg), a yolk protein precursor, plays an important role in the oocyte development of insects and is an important target of genetic pest management. Vg is synthesized in the fat body, transported through haemolymph and accumulates in developing oocytes. In this regard, the eggplant shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Crambidae) is the major pest in South and South East Asia and a serious concern for farmers. Therefore, in the present study, we have cloned and characterized Vg from L. orbonalis (LoVg) for further applications. The cloned Vg consisted of 5,370 base pairs encoding 1,790 amino acid residues long protein. Further, sequence alignment revealed that LoVg has three conserved domains: a Vitellogenin N domain (LPD-N), a domain of unknown function protein families (DUF1943), and a von Willebrand factor type D domain (VWD). Using phylogenetic analysis, it was found that LoVg evolved alongside homologous proteins from different insects. The real-time expression levels of LoVg were significantly greater in female adults followed by the pupal stage. This suggests that Vg production and absorption in L. orbonalis occurs in the later pupal stage. Our studies showed that editing LoVg using CRISPR/Cas9 did not affect the total number of eggs laid but affected egg hatchability. These studies help us to design newer approaches in insect pest management through genetic suppression for sustainable pest management.
Keywords: CRISPR/Cas9; Leucinodes orbonalis; Vitellogenin.
Copyright © 2024 Elsevier B.V. All rights reserved.