Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy

Immunother Adv. 2024 Aug 26;4(1):ltae006. doi: 10.1093/immadv/ltae006. eCollection 2024.

Abstract

The evolving landscape of cancer immunotherapy has revolutionized cancer treatment. However, the dynamic tumor microenvironment has led to variable clinical outcomes, indicating a need for predictive biomarkers. Noninvasive nuclear imaging, using radiolabeled modalities, has aided in patient selection and monitoring of their treatment response. This approach holds promise for improving diagnostic accuracy, providing a more personalized treatment regimen, and enhancing the clinical response. Nanobodies or single-domain antibodies, derived from camelid heavy-chain antibodies, allow early timepoint detection of targets with high target-to-background ratios. To date, a plethora of nanobodies have been developed for nuclear imaging of tumor-specific antigens, immune checkpoints, and immune cells, both at a preclinical and clinical level. This review comprehensively outlines the recent advancements in nanobody-based nuclear imaging, both on preclinical and clinical levels. Additionally, the impact and expected future advancements on the use of nanobody-based radiopharmaceuticals in supporting cancer diagnosis and treatment follow-up are discussed.

Keywords: cancer; diagnostics; immunotherapy; nanobodies; nuclear imaging.

Publication types

  • Review