High-intensity interval training (HIIT) has been found to be more effective in relieving heart failure (HF) symptoms, than moderate-intensity continuous aerobic training (MICT). Additionally, higher meteorin-like protein (Metrnl) levels are seen after HIIT versus MICT. We investigated whether Metrnl contributed to post-HF cardiac functional improvements, and the signaling pathways involved. 50 HF patients underwent MICT, and another 50, HIIT, which was followed by cardiac function and serum Metrnl measurements. Metrnl was also measured in both blood and skeletal muscle samples of mice with transverse aortic constriction-induced HF after undergoing HIIT. Afterward, shRNA-containing adenovectors were injected into mice, yielding five groups: control, HF, HF + HIIT + scrambled shRNA, HF + HIIT + shMetrnl, and HF + Metrnl (HF + exogenous Metrnl). Mass spectrometry identified specific signaling pathways associated with increased Metrnl, which was confirmed with biochemical analyses. Glucose metabolism and mitochondrial functioning were evaluated in cardiomyocytes from the five groups. Both HF patients and mice had higher circulating Metrnl levels post-HIIT. Metrnl activated AMPK in cardiomyocytes, subsequently increasing histone deacetylase 4 (HDAC4) phosphorylation, leading to its cytosolic sequestration and inactivation via binding with chaperone protein 14-3-3. HDAC4 inactivation removed its repression on glucose transporter type 4, which, along with increased mitochondrial complex I-V expression, yielded improved aerobic glucose respiration and alleviation of mitochondrial dysfunction. All these changes ultimately result in improved post-HF cardiac functioning. HIIT increased skeletal muscle Metrnl production, which then operated on HF hearts to alleviate their functional defects, via increasing aerobic glucose metabolism through AMPK-HDAC4 signaling.
Keywords: AMPK; GLUT4; HDAC4; Heart failure; High intensity interval training; Meteorin-like protein.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.