Using diffusion tensor imaging (DTI), we assessed the extent to which fractional anisotropy values in the dorsal (i.e., arcuate fasciculus; AF) versus ventral (i.e., inferior fronto-occipital fasciculus; IFOF) distinction of structural white matter pathways associated with selected reading processes, could be replicated in skilled adult readers (N = 17) and extended to adults with reading impairments (N = 13). In addition to the AF and IFOF, motor-based tracts (i.e., posterior limb of the internal capsule (PLIC) and the frontal aslant tract (FAT)) were isolated to explore their role in reading performance. Several interesting relationships with reading performance emerged. First, orthographic awareness was related to the left IFOF in skilled readers, whereas orthographic awareness was related to left PLIC for impaired readers. Morphological awareness was related to left FAT for skilled readers, whereas morphological awareness was related to right AF, right IFOF and left PLIC for impaired readers. Overall, these findings support the notion that adult reading performance (both skilled and impaired) is related to the structural properties of the ventral white matter pathways. More consideration should be paid to motor pathways, particularly the PLIC, and their role in compensatory reading strategies in individuals with reading impairments.
Keywords: Diffusion tensor imaging; motor pathways; reading impairment; tractography.