Pinus sylvestris trees are known to efficiently defend themselves against eggs of the herbivorous sawfly Diprion pini. Their direct defense against eggs is primable by prior exposure to the sex pheromones of this species and their indirect defense involves attraction of egg parasitoids by egg-induced pine needle odor. But it is unknown whether exposure of pine to D. pini sex pheromones also affects pine indirect defense against sawfly eggs. In this study, we investigated the influence of exposure of P. sylvestris trees to the sex pheromones of D. pini on indirect defense mediated by egg parasitoids. Behavioral assays with Closterocerus ruforum, a key parasitoid of sawfly eggs, revealed no significant attraction to odor from egg-free pines pre-exposed to pheromones. Chemical analyses of odor from egg-free pines showed no pheromone-induced change in the emission rates of the known key terpenoids promoting parasitoid attraction. Further comparative analyses of odor from egg-laden pines pre-exposed to the sex pheromones and of odor from egg-laden pines unexposed to pheromones neither revealed significant differences in the emission rates of terpenoids relevant for parasitoid attraction. The results suggest that a pheromone-induced or pheromone-primed, egg-induced pine indirect defense seems to be redundant in addition to the known pheromone-primable pine direct defense against the eggs and the known egg-inducible indirect defense.
Keywords: Egg parasitoids; Pine; Sawfly; Semiochemicals; Tritrophic interaction.
© 2024. The Author(s).