An Automated Analysis of Homocoupling Defects Using MALDI-MS and Open-Source Computer Software

J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2366-2375. doi: 10.1021/jasms.4c00225. Epub 2024 Sep 18.

Abstract

Conjugated organic polymers have substantial potential for multiple applications but their properties are strongly influenced by structural defects such as homocoupling of monomer units and unexpected end-groups. Detecting and/or quantifying these defects requires complex experimental techniques, which hinder the optimization of synthesis protocols and fundamental studies on the influence of structural defects. Mass spectrometry offers a simple way to detect these defects but a manual analysis of many complex spectra is tedious and provides only approximate results. In this work, we develop a computational methodology for analyzing complex mass spectra of organic copolymers. Our method annotates spectra similarly to a human expert and provides quantitative information about the proportions of signal assigned to each ion. Our method is based on the open-source Masserstein algorithm, which we modify to handle large libraries of reference spectra required for annotating complex mass spectra of polymers. We develop a statistical methodology to analyze the quantitative annotations and compare the statistical distributions of structural defects in polymer chains between samples. We apply this methodology to analyze commercial and lab-made samples of a benchmark polymer and show that the samples differ both in the amount and in the types of structural defects.