Peroxisome Proliferator-Activated Receptor δ Suppresses the Cytotoxicity of CD8+ T Cells by Inhibiting RelA DNA-Binding Activity

Cancer Res Commun. 2024 Oct 1;4(10):2673-2684. doi: 10.1158/2767-9764.CRC-24-0264.

Abstract

The molecular mechanisms regulating CD8+ cytotoxic T lymphocytes (CTL) are not fully understood. Here, we show that the peroxisome proliferator-activated receptor δ (PPARδ) suppresses CTL cytotoxicity by inhibiting RelA DNA binding. Treatment of ApcMin/+ mice with the PPARδ agonist GW501516 reduced the activation of normal and tumor-associated intestinal CD8+ T cells and increased intestinal adenoma burden. PPARδ knockout or knockdown in CTLs increased their cytotoxicity against colorectal cancer cells, whereas overexpression of PPARδ or agonist treatment decreased it. Correspondingly, perforin, granzyme B, and IFNγ protein and mRNA levels were higher in PPARδ knockout or knockdown CTLs and lower in PPARδ overexpressing or agonist-treated CTLs. Mechanistically, we found that PPARδ binds to RelA, interfering with RelA-p50 heterodimer formation in the nucleus, thereby inhibiting its DNA binding in CTLs. Thus, PPARδ is a critical regulator of CTL effector function. Significance: Here, we provide the first direct evidence that PPARδ plays a critical role in suppressing the immune response against tumors by downregulating RelA DNA-binding activity. This results in decreased expression of perforin, granzyme B, and IFNγ. Thus, PPARδ may serve as a valuable target for developing future cancer immunotherapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes* / immunology
  • CD8-Positive T-Lymphocytes* / metabolism
  • Cell Line, Tumor
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / immunology
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • Cytotoxicity, Immunologic
  • DNA / metabolism
  • Granzymes* / metabolism
  • Humans
  • Interferon-gamma / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • PPAR delta / genetics
  • PPAR delta / metabolism
  • Perforin* / genetics
  • Perforin* / metabolism
  • Pore Forming Cytotoxic Proteins / genetics
  • Pore Forming Cytotoxic Proteins / metabolism
  • T-Lymphocytes, Cytotoxic / drug effects
  • T-Lymphocytes, Cytotoxic / immunology
  • T-Lymphocytes, Cytotoxic / metabolism
  • Transcription Factor RelA* / metabolism

Substances

  • DNA
  • Granzymes
  • Interferon-gamma
  • Perforin
  • perforin, mouse
  • Pore Forming Cytotoxic Proteins
  • PPAR delta
  • Rela protein, mouse
  • Transcription Factor RelA
  • Ppard protein, mouse