Vancomycin-functionalized micro- or nanoparticles are frequently used for isolation and enrichment of bacteria from various samples. Theoretically, only Gram-positive organisms should adhere to the functionalized surfaces as vancomycin is an antibiotic targeting a peptidoglycan precursor in the cell wall, which in Gram-negative bacteria is shielded by the outer cell membrane. In the literature, however, it is often reported that Gram-negative bacteria also bind efficiently to the vancomycin-modified particles. The goal of our study was to identify the underlying cause for these different findings. For each species several strains, including patient isolates, were investigated, and effects such as day-to-day reproducibility, particle type, and the antimicrobial effect of vancomycin-coupled beads were explored. Overall, we found that there is a strong preference for binding Gram-positive organisms, but the specific yield is heavily influenced by the strain and experimental conditions. For Staphylococcus aureus average yields of approximately 100% were obtained. Respectively, yields of 44% for Staphylococcus cohnii, 22% for Staphylococcus warneri, 17% for Enterococcus faecalis and 5% for vancomycin-sensitive Enterococcus faecium were found. Yields for Gram-negative species (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii) and vancomycin-resistant Enterococcus faecium were below 3%. Our results indicate that the interaction between vancomycin and the D-alanine-D-alanine terminus of the peptidoglycan precursor in the bacterial cell wall is the dominant force responsible for the adherence of the bacteria to the particle surface. It needs to be considered though, that other factors, such as the specific molecules presented on the bacterial surface, as well as the pH, and the ion concentrations in the surrounding medium will also play a role, as these can lead to attractive or repulsive electrostatic forces. Last but not least, when using colony forming unit-based quantification for determining the yields, the influence of cell cluster formation and different sensitivities towards the antimicrobial effect of the vancomycin beads between species and strains needs to be considered.