Pharmacodynamics of Sishen decoction in relieving rheumatoid arthritis: Chemical composition, regulatory pathway and online prediction simulation

Heliyon. 2024 Aug 30;10(17):e37257. doi: 10.1016/j.heliyon.2024.e37257. eCollection 2024 Sep 15.

Abstract

As a commonly used traditional Chinese medicine formula for treating rheumatoid arthritis (RA), Sishen Decoction (SSD) has anti-inflammatory, analgesic and swelling relief effects. However, at present, the pharmacodynamic basis of SSD and its mechanism of treating RA have not been clarified, and further research is needed. Analyzing the pharmacological basis of SSD was the aim of our study and further elucidate its therapeutic mechanism and potential targets for treating RA. LC‒MS was used to identify the high content and characteristic chemical components of SSD. On this basis, a network of pharmacological analysis was established between the chemical structure and RA. According to the predicted possible pathways and targets, in vivo pharmacodynamic experiments and related pathway analysis were conducted. Finally, the possible targets and mechanisms of SSD in treating RA were analyzed. Identified 78 compounds from SSD by LC-MS, including 23 flavonoids, 19 phenolic acids, 9 monoterpenoids and 26 other compounds. Network pharmacological analysis based on pharmacodynamic substances revealed that the most likely interaction pathway between SSD and RA was the PI3K/AKT/mTOR pathway. Foot swelling and inflammatory factors (IL-6, IL-10, IL-18, TGF, TNF-α, VEGF) in model mice were shown to be significantly improved in vivo. WB and qPCR experiments proved that SSD could significantly regulate the pathway of PI3K/AKT/mTOR. The interaction between SSD and AKT target was further analyzed by multispectroscopy. This study revealed that SSD alleviates RA by regulating the pathway of PI3K/AKT/mTOR and preliminarily revealed the pharmacodynamic mechanism of SSD for the first time.

Keywords: Chemical composition; Computational simulation; PI3K/AKT pathway; Rheumatoid arthritis; Sishen decoction.