Lipid Metabolism Modulatory Cisplatin Prodrug Sensitizes Resistant Prostate Cancer toward Androgen Deprivation Therapy

ACS Pharmacol Transl Sci. 2024 Aug 12;7(9):2820-2826. doi: 10.1021/acsptsci.4c00301. eCollection 2024 Sep 13.

Abstract

Mainstream treatment modalities which dominate the therapeutic landscape of prostate cancer (PCa) are prostatectomy, radiation therapy, and androgen deprivation therapy (ADT) or castration. These therapeutic options can extend the life expectancy of the patients but eventually fail to completely cure the disease. Despite undergoing ADT, patients still experience disease recurrence. One of the reasons for this recurrence is the binding of the basal androgens present in blood plasma to the androgen receptor (AR). At this stage, the disease becomes castration-resistant prostate cancer (CRPC) showing resistance to ADT promoting progression, and there is no effective treatment available. Although another male cancer such as testicular cancer responds to cisplatin-based therapy very well, PCa is resistant to cisplatin. In our continued effort to find the pathways that are important for such resistance, we link in this report, tumor metabolism driven androgen regulation and PCa resistance toward cisplatin-based therapy. To delve deeper into understanding how metabolic modulatory cisplatin prodrugs can be used to target the ADT resistant population, we demonstrate that metabolic inhibition by a cisplatin prodrug, Platin-L has the potential to modulate AR activity and resensitize ADT resistant cells toward cisplatin-based chemotherapy as well as ADT. The mode of action for Platin-L is inhibition of fatty acid oxidation (FAO) of prostate cancer cells. We demonstrated that FAO inhibition by Platin-L in PCa cells contribute to AR regulation resulting in altered tumorigenicity of androgen sensitive prostate cancer.