Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi vic-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.
Keywords: Imidazolidine; breast cancer; cisplatin; platinum complexes; vic-dioxime.
© TÜBİTAK.