Efficient CRISPR-mediated genome editing can be initiated by embryonic injection but not by ovarian delivery in the beetle Tribolium castaneum

Insect Sci. 2024 Sep 20. doi: 10.1111/1744-7917.13447. Online ahead of print.

Abstract

The clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9)-mediated gene editing technology has revolutionized the study of fundamental biological questions in various insects. Diverse approaches have been developed to deliver the single-guide RNA (sgRNA) and Cas9 to the nucleus of insect embryos or oocytes to achieve gene editing, including the predominant embryonic injection methods and alternative protocols through parental ovary delivery. However, a systematic comparative study of these approaches is limited, especially within a given insect. Here, we focused on revealing the detailed differences in CRISPR/Cas9-mediated gene editing between the embryo and ovary delivery methods in the beetle Tribolium castaneum, using the cardinal and tyrosine hydroxylase (TH) as reporter genes. We demonstrated that both genes could be efficiently edited by delivering Cas9/sgRNA ribonucleoproteins to the embryos by microinjection, leading to the mutant phenotypes and indels in the target gene sites. Next, the Cas9/sgRNA complex, coupled with a nanocarrier called Branched Amphiphilic Peptide Capsules (BAPC), were delivered to the ovaries of parental females to examine the efficacy of BAPC-mediated gene editing. Although we observed that a small number of beetles' progeny targeting the cardinal exhibited the expected white-eye phenotype, unexpectedly, no target DNA indels were found following subsequent sequencing analysis. In addition, we adopted a novel approach termed "direct parental" CRISPR (DIPA-CRISPR). However, we still failed to find gene-editing events in the cardinal or TH gene-targeted insects. Our results indicate that the conventional embryonic injection of CRISPR is an effective method to initiate genome editing in T. castaneum. However, it is inefficient by the parental ovary delivery approach.

Keywords: CRISPR/Cas9; Tribolium castaneum; embryo injection; gene editing; ovary delivery.