The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical "cold-start" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.
Keywords: compound-protein interaction; drug discovery; knowledge graph embedding; machine learning; perturbation transcriptomics; target inference; virtual screening.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.